The embryo makes red blood cell progenitors in every tissue simultaneously with blood vessel morphogenesis.
نویسندگان
چکیده
During embryonic life, hematopoiesis occurs first in the yolk sac, followed by the aorto-gonado-mesonephric region, the fetal liver, and the bone marrow. The possibility of hematopoiesis in other embryonic sites has been suspected for a long time. With the use of different methodologies (transgenic mice, electron microscopy, laser capture microdissection, organ culture, and cross-transplant experiments), we show that multiple regions within the embryo are capable of forming blood before and during organogenesis. This widespread phenomenon occurs by hemo-vasculogenesis, the formation of blood vessels accompanied by the simultaneous generation of red blood cells. Erythroblasts develop within aggregates of endothelial cell precursors. When the lumen forms, the erythroblasts "bud" from endothelial cells into the forming vessel. The extensive hematopoietic capacity found in the embryo helps explain why, under pathological circumstances such as severe anemia, extramedullary hematopoiesis can occur in any adult tissue. Understanding the intrinsic ability of tissues to manufacture their own blood cells and vessels has the potential to advance the fields of organogenesis, regeneration, and tissue engineering.
منابع مشابه
A Biomechanical Approach for the Study of Deformation of Red Cells in Narrow Capillaries
This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap between the red cell and the vessel wall is generally small compared to the radius of the capillary for a single file flow of red cell in narrow vessel, particularly if the vessel diame...
متن کاملCirculation is established in a stepwise pattern in the mammalian embryo.
To better understand the relationship between the embryonic hematopoietic and vascular systems, we investigated the establishment of circulation in mouse embryos by examining the redistribution of yolk sac-derived primitive erythroblasts and definitive hematopoietic progenitors. Our studies revealed that small numbers of erythroblasts first enter the embryo proper at 4 to 8 somite pairs (sp) (e...
متن کاملSpire, an Actin Nucleation Factor, Regulates Cell Division during Drosophila Heart Development
The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell d...
متن کاملDistinct Notch signaling outputs pattern the developing arterial system.
Differentiation of arteries and veins is essential for the development of a functional circulatory system. In vertebrate embryos, genetic manipulation of Notch signaling has demonstrated the importance of this pathway in driving artery endothelial cell differentiation. However, when and where Notch activation occurs to affect endothelial cell fate is less clear. Using transgenic zebrafish beari...
متن کاملDear Editor,
I read with interest Dr. Yazdani's reply about the article entitled “administration of magnesium sulfate to women with premature labor: The effect on bleeding time”.1 In my review of hematology references, I could not find any reference for determining hemoglobin (Hb) sooner than 24 hrs and Dr. Yazdani had not cited any reference either. However, about the influence of Hb on homeostasis, ther...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 284 4 شماره
صفحات -
تاریخ انتشار 2003